19. References

[nMOLDYN_ref1]
Title:

nMOLDYN: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations

Authors:
    1. Kneller, V. Keiner, M. Kneller, M. Schiller

Journal:

Comp. Phys. Comm. 91, 191-214 (1995)

DOI:

10.1016/0010-4655(95)00048-K

[nMOLDYN_ref2]
Title:

nMoldyn: A program package for a neutron scattering oriented analysis of Molecular Dynamics simulations”

Authors:
  1. Róg, K. Murzyn, K. Hinsen, G. R. Kneller

Journal:
  1. Comput. Chem. 24, 657-667 (2003)

DOI:

10.1002/jcc.10243

[nMOLDYN_ref3]
Title:

nMoldyn3: Using task farming for a parallel spectroscopy-oriented analysis of molecular dynamics simulations”

Authors:
  1. Hinsen, E. Pellegrini, S. Stachura, G. R. Kneller

Journal:
  1. Comput. Chem. 33, 2043-2048 (2012)

DOI:

10.1002/jcc.23035

[Ref1]

G. Goret, B. Aoun, and E. Pellegrini, “MDANSE: An Interactive Analysis Environment for Molecular Dynamics Simulations,” J. Chem. Inf. Model., vol. 57, no. 1, pp. 1-5, Jan. 2017, DOI: 10.1021/acs.jcim.6b00571.

[Ref2]

“MDANSE GitHub Actions.” https://github.com/ISISNeutronMuon/MDANSE/actions.

[Ref3]

“Open a Mac app from an unidentified developer.” https://support.apple.com/en-gb/guide/mac-help/mh40616/mac).

[Ref4]

K. Haslam, “How to open a Mac app from an unidentified developer.” https://www.macworld.co.uk/how-to/mac-app-unidentified-developer-3669596/.

[Ref5]

“MDANSE GitHub Issue #8.” https://github.com/ISISNeutronMuon/MDANSE/issues/8.

[Ref6]

“University Corporation for Atmospheric Research.” http://www.ucar.edu/.

[Ref7]

“The HDF Group.” https://www.hdfgroup.org/.

[Ref9]

“MDANSE GitHub Issues.” https://github.com/ISISNeutronMuon/MDANSE/issues.

[Ref10]

F. J. Harris, “On the use of windows for harmonic analysis with the discrete Fourier transform,” Proc. IEEE, vol. 66, no. 1, pp. 51–83, 1978, doi: 10.1109/PROC.1978.10837.

[Ref11]

J. P. Boon and S. Yip, Molecular Hydrodynamics. New York: McGraw-Hill, 1980.

[Ref12]
    1. Kneller, “Technical Report Jül 2215,” Jülich, Germany.

[Ref13]

A. G. Redfield, “On the Theory of Relaxation Processes,” IBM J. Res. Dev., vol. 1, no. 1, pp. 19–31, 1957, doi: 10.1147/rd.11.0019.

[Ref14]

G. Lipari and A. Szabo, “Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity,” J. Am. Chem. Soc., vol. 104, no. 17, pp. 4546–4559, Aug. 1982, doi: 10.1021/ja00381a009.

[Ref15]

G. Lipari and A. Szabo, “Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 2. Analysis of experimental results,” J. Am. Chem. Soc., vol. 104, no. 17, pp. 4559–4570, Aug. 1982, doi: 10.1021/ja00381a010.

[Ref16]

L. Van Hove, “Correlations in Space and Time and Born Approximation Scattering in Systems of Interacting Particles,” Phys. Rev., vol. 95, no. 1, pp. 249–262, Jul. 1954, doi: 10.1103/PhysRev.95.249.

[Ref17]

P. Schofield, “Space-Time Correlation Function Formalism for Slow Neutron Scattering,” Phys. Rev. Lett., vol. 4, no. 5, pp. 239–240, Mar. 1960, doi: 10.1103/PhysRevLett.4.239.

[Ref18]

G. R. Kneller, “Inelastic neutron scattering from classical systems,” Mol. Phys., vol. 83, no. 1, pp. 63–87, Sep. 1994, doi: 10.1080/00268979400101081.

[Ref19]

J.-. P. Hansen and I. R. McDonald, “Correlations in Space and Time,” in Theory of Simple Liquids, 3rd ed., Elsevier, 2006, pp. 195–201.

[Ref20]

S. W. Lovesey, Theory of Neutron Scattering from Condensed Matter, vol. 1. Oxford: Clarendon Press, 1986.

[Ref21]

G. R. Kneller, W. Doster, M. Settles, S. Cusack, and J. C. Smith, “Methyl group dynamics in the crystalline alanine dipeptide: A combined computer simulation and inelastic neutron scattering analysis,” J. Chem. Phys., vol. 97, no. 12, pp. 8864–8879, Dec. 1992, doi: 10.1063/1.463361.

[Ref22]

A. Rahman, K. S. Singwi, and A. Sjölander, “Theory of Slow Neutron Scattering by Liquids. I,” Phys. Rev., vol. 126, no. 3, pp. 986–996, May 1962, doi: 10.1103/PhysRev.126.986.

[Ref23]

J.-P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, “Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes,” J. Comput. Phys., vol. 23, no. 3, pp. 327–341, 1977, doi: https://doi.org/10.1016/0021-9991(77)90098-5.

[Ref24]

G. R. Kneller, “Superposition of Molecular Structures using Quaternions,” Mol. Simul., vol. 7, no. 1–2, pp. 113–119, May 1991, doi: 10.1080/08927029108022453.

[Ref25]

S. L. Altmann, Rotations, quaternions, and double groups. Oxford: Clarendon Press, 1986.

[Ref26]

“Axonometric Projection.” https://en.wikipedia.org/wiki/Axonometric_projection#:~:text=In trimetric projection%2C the direction,by the angle of viewing.

[Ref27]

“CASTEP.” http://www.castep.org/.

[Ref28]

“CHARMM.” http://www.charmm.org/.

[Ref29]

“PDB specification.” http://www.wwpdb.org/documentation/file-format.php.

[Ref30]

“DFTB.” https://dftb.org/.

[Ref33]

“Gromacs.” https://www.gromacs.org/.

[Ref34]

“LAMMPS.” https://www.lammps.org/.

[Ref36]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions. New York: Dover, 1972.

[Ref38]

“MDANSE GitHub.” https://github.com/ISISNeutronMuon/MDANSE.

[Ref39]

“Miniconda Windows.” https://docs.conda.io/en/latest/miniconda.html.

[Ref41]

C. Gohlke, “Unofficial Windows Binaries for Python Extension Packages.” https://www.lfd.uci.edu/~gohlke/pythonlibs/#wxpython.

[Ref43]

“CP2K Open Source Molecular Dynamics.” https://www.cp2k.org

[Ref44]

Brigham, E.O. “The Fast Fourier Transfrom” Prentice Hall, Englewood Cliffs (NJ) USA, 1974.

[Ref45]

Papoulis, A. “Signal Analysis” McGraw-Hill, Singapore, 1984.

[Ref46]

Harris, F.J. “Proc. IEEE” (1978), 66 1, 51-83.

[Ref47]

Fernandez-Alonso, F. and Price, D. “Neutron Scattering (Experimental Methods in the Physical Sciences)” ISBN: 9780123983749